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Complex networks emerge under different conditions including design �i.e., top-down decisions� through
simple rules of growth and evolution. Such rules are typically local when dealing with biological systems and
most social webs. An important deviation from such a scenario is provided by groups, collectives of agents
engaged in technology development, such as open-source communities. Here we analyze their network struc-
ture, showing that it defines a complex weighted network with scaling laws at different levels, as measured by
looking at e-mail exchanges. We also present a simple model of network growth involving nonlocal rules based
on betweenness centrality. Our weighted network analysis suggests that a well-defined interplay between the
overall goals of the community and the underlying hierarchical organization play a key role in shaping its
dynamics.
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I. INTRODUCTION

Networks predate complexity, from biology and society to
technology �1�. In many cases, large-scale, system-level
properties emerge in a self-organized manner from local
�bottom-up� interactions among network components. This is
consistent with the general lack of global goals that pervade
cellular webs or acquaintance networks. However, when
dealing with human collective efforts towards a given objec-
tive, such as in a company or in distributed technology de-
velopment, the situation can be rather different. Top-down
decisions might dominate the structure and function in a hi-
erarchical way; but how to distinguish between the two sce-
narios?

The intrinsic network organization of social interactions
allows one to explore this question in depth. Many of these
networks can be reconstructed by using e-mail exchanges
among agents. The resulting graph provides a well-defined
picture of the global community organization. By looking at
its topology, we could in principle identify the presence �or
absence� of self-organized �SO� or designed �top-down� pat-
terns. Here SO refers to patterns emerging from local rules.
Such a system would display global features resulting from a
bottom-up dynamics. Eventually, a model of network growth
can be proposed in order to explain the origin of such a
pattern. An example of this is the work by Caldarelli et al.
�2� who studied the emergence of weighted social networks.
These authors showed that the structure of e-mail webs could
be explained using a simple local mechanism based on posi-
tive feedback and reciprocity.

In this paper we explore the problem of how SO and
hierarchy might actually emerge and coexist in a distributed
community of technological developers. Specifically, we will
present the first analysis of weighted open-source �OS� com-
munities �3�. In OS communities, software is developed
through distributed cooperation among many agents. These
communities are known to display a large amount of distrib-
uted, bottom-up organization. Specifically, large groups of
programmers are involved in building, assembling, and spe-
cially maintaining large-scale software structures. The com-

munity plays multiple roles as a design system but also as a
distributed intelligence system able to accept or reject
changes introduced by agents. As described, it looks like we
are talking about a largely self-organized entity. Given the
quality of the information available on their internal struc-
ture, OS organizations offer a unique opportunity to test if
they are fully self-organized social groups �4� in constrast
with more hierarchical, top-down organized social groups
�i.e., large companies�.

One possible test to these potential modes of community
organization involves using the network of interaction be-
tween programmers working in a given software system.
Software systems are themselves complex networks �5�,
which have been shown to display small world and scale-free
architecture. Since the topological organization of software
designs is scale-free, we might suspect that the community
organization also displays common traits with the underlying
software architecture. Previous work on engineering
problem-solving networks involved in product development
�6� revealed that these groups define a complex network with
heterogeneous link distributions. However, these networks
are unweighted and largely dominated by top-down con-
straints. Here, we consider a different type of engineering
community where relations among agents are weighted and
change in time without previously defined hierarchies.

As we will show here, OS networks �OSN� display scal-
ing laws but also a well-defined core of main programmers
defining a special subset of agents. Such finding suggests
that, even in these distributed groups of individuals, emer-
gence of hierarchy might be inevitable. Our analysis reveals
the interplay between bottom-up, distributed decision mak-
ing periphery in the OSN involving many agents and a top-
down driven, centralized core of agents. Such rich-club
structure seems to place some limits to the degree of distrib-
utedness achievable by multiagent-based technological de-
sign.

The paper is organized as follows. In Sec. II the data set is
presented. In Sec. III several global network measures are
presented. In Sec. IV the internal correlations are analyzed.
Section V presents a nonlocal model that agrees with empiri-
cal observations. Finally, Sec. VI provides a discussion.
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II. E-MAIL NETWORKS OF OPEN-SOURCE
COMMUNITIES

Social network analysis depicts agents and their relation-
ships with nodes and links, respectively �7�. Electronic ex-
changes allows tracking every social interaction and enables
us to study highly detailed registers of human activities.
Some remarkable examples of this are web surfing and
e-mail communication. For example, e-mail is an important
vehicle of communication and we can recover social interac-
tions by analyzing all e-mails exchanged within a given com-
munity �8–11�. These e-mail studies recover the underlying
social network by representing each agent with a node and a
link indicates that e-mails have been exchanged between its
end points.

We apply this methodology to the study of human inter-
action in the context of open source software projects, an
interesting and poorly understood social phenomenon. Inves-
tigating OS social structure is useful to understand how hu-
man teams design complex engineering systems �12�. The
study of OS communities is different from other studies of
online communities �13�. Both communities are apparently
quite similar if we look at how communication takes place
�i.e., Internet-enabled communication�. However, interaction
in the OS community stems from the common goal of
achieving a functional system, i.e., an OS software system,
while communication in general web sites spans a broader
range of interests and motivations.

Following Ref. �14�, we have analyzed the structure and
modeled the evolution of social interaction in OS communi-
ties �15�. We study a publicly available electronic database
describing the e-mail activity in different open-source com-
munities �14�. The e-mail data comes from the SourceForge
�SF� web site, a large and popular OS project repository that
hosts a very large number of OS software projects. This web
site constitutes a centralized resource for managing software
projects, issues, communication, and source code. The com-
munication services offered by the SF store �and classify� all
e-mail exchanges between project members in web pages.
For example, there are web-based resources used to discuss
development, software usage, and bug issues. These web
pages can be searched by users to find all the previous
e-mails regarding the problem they are trying to solve. From
this collection of web pages, we have discarded all e-mails
not directly related to the software process �i.e., personal
issues, spam, etc.�. We have limited our analysis to e-mail
traffic associated to bug reports, which is a key feature of
software development.

We have analyzed 120 OS networks corresponding to dif-
ferent software projects. We reconstruct the social network
with the following method. For each OS network �= �V ,L�,
nodes vi�V depict community members while directed links
�i , j��L denote e-mail communication whether the member
i replies to the member j. At time t, a member vi discovers a
new software error �bug� and sends a notification e-mail.
Afterwards, other members investigate the origin of the soft-
ware bug and eventually reply to the message, either explain-
ing the solution or asking for more information. Here Eij�t�
=1 if developer i replies to developer j at time t and is zero
otherwise. From Eij we define link weight eij as the total

amount of e-mail traffic flowing from developer i to devel-
oper j:

eij = �
t=0

T

Eij�t� , �1�

where T is the time span of software development. We have
found that e-mail traffic is highly symmetric, i.e., eij �eji. In
order to measure link symmetry, we introduce a weighted
measure of link reciprocity �16� namely the link weight reci-
procity �w, defined as

�w =

�
i�j

�eij − ē��eji − ē�

�
i�j

�eij − ē�2
, �2�

where ē=�i�jeij /N�N−1� is the average link weight. This
coefficient enables us to differentiate between weighted re-
ciprocal networks ��w�0� and weighted antireciprocal net-
works ��w�0�. The neutral case is given by �w�0. All sys-
tems analyzed here display strong symmetry, with �w�1.
This pattern can be explained in terms of fair reciprocity �2�,
where any member replies to every received e-mail. Thus we
can make the simplifying assumption that the network is
undirected.

However, we do not restrict our study to purely topologi-
cal links. Instead, their weighted structure is also taken into
account. The edge weight �interaction strength� is defined as
wij =eij +eji, which provides a measure of traffic exchanges
between any pair of members. From this weighted matrix we
can estimate node strength �17� as a local measure defined as

si = �
j

wij , �3�

i.e., the total number of messages exchanged between node i
and the rest of the community. This definition will be used
below in our analysis of the weighted OS network.

III. TOPOLOGY OF OS NETWORKS

Figure 1 shows two social networks recovered with the
above method. We can appreciate an heterogeneous pattern
of e-mail interaction, where a few members handle the larg-
est fraction of e-mail traffic generated by the OS community.
The undirected degree distribution is roughly a power-law
P�k��k−� with ��2 �see Fig. 2�b��. However, P�k� displays
a hump at some intermmediate degree kc �see Fig. 2�b��. The
hump suggests a two-level classification of nodes in the OS
network: periphery nodes with few connections having k
�kc and hub nodes having k�kc. This desviation might be
an indication of a rich-club ordering in the OS network �see
below�.

In order to understand the role played by hubs in OS
networks, we have measured the betweenness centrality bi
�or node load �18��, i.e., the number of shortest paths passing
through the ith node �19�. Betweenness centrality displays a
long tail P�b��b−� with an exponent � between 1.3 and 1.8
�see Table I and also Fig. 2�c��. It was shown that between-
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ness centrality scales with degree in the Internet autonomous
systems and in the Barabási-Albert network �20�, as b�k�
�k−�. From the cumulative degree distribution, i.e.,

P��k� = 	
k

	

P�k�dk � k1−� �4�

and the corresponding integrated betweenness, with P��b�
�b1−�, it follows that �= ��−1� / ��−1� �21�. The social net-
works studied here display a similar scaling law with an
exponent � slightly departing from the theoretical prediction
�see Fig. 2�a� and Table I�. The strong correlation between
node load and large degree indicates that hubs tend to domi-
nate e-mail discussions in the OS community.

In a previous work �22�, we have studied different cen-
trality measures for OS networks, including node outdegree
and strength. In a weighted network, s= 
w�k when there is
no correlation between degree k and strength s and 
w� is the
average link weight. On the other hand, in the presence of
correlations we will have s�k��k
 with 
�1. Indeed, the
latter is the case for OS networks, indicating that node
strength is a better indication of node centrality than raw
node degree. In the following section we will interpret this
correlation in terms of a rich-club ordering of the OS net-
work.

IV. CORRELATIONS AND RICH-CLUB PHENOMENON IN
OS NETWORKS

The above measurements provide a global picture of OSN
but also suggest the presence of a two-level underlying struc-
ture, i.e., hubs and periphery nodes. In order to reveal such
organization, we need to consider correlation measures
among nodes having different numbers of links. We can de-
tect the presence of node-node correlations by measuring the
average nearest-neighbors degree:

knn�k� = �
k�

k�P�k�k�� , �5�

where P�k �k�� is the conditional probability of having a link
attached to nodes with degree k and k�. Here, the average
nearest-neighbors degree decays as a power law, 
knn��k−�

with ��0.75 for k�10 �see Fig. 3�a��.This decreasing be-
havior of 
knn�k�� indicates that, on average, hubs tend to be
connected to low degree nodes �see Fig. 1�a��. That is, OS
networks are good instances of disassortative networks.
Moreover, the hierarchical nature of these graphs is well-
illustrated from the scaling exhibited by the clustering C�k�
against k, which scales as C�k��1/k �not shown�, and con-
sistently with theoretical predictions �23�.

Following �17�, we define the weighted average nearest-
neighbors degree,

knn,i
w =

1

si
�
j=1

k

wijkj , �6�

where neighbor degree kj is weighted by the ratio �wij /si�.
According to this definition, knn,i

w �knn if strong edges point
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FIG. 2. �a� Average betweenness centrality scales with degree

b�k���k� with ��1.59 for the Python OS community. This expo-
nent is close to the theoretical prediction �BA���−1� / ��−1�
=1.70 �see text�. �b� Cumulative distribution of undirected degree
P��k��k−�+1 with ��1.97. �c� Cumulative distribution of be-
tweenness centrality P��b��b−�+1 with ��1.57 for b�102.

A  B  

FIG. 1. Social networks of e-mail exchanges in open source
communities. Line thickness represents the number of e-mails flow-
ing from the sender to the receiver. Dark depicts active members
and frequent communication. �a� Social network GAmavis for the
Amavis open-source community. �b� Social network GTCL for the
TCL �i.e., Tool Command Language� open-source community with
N=215 members and 
k��3. In both networks, a few hubs �center
dark nodes� route the bulk of information generated by many pe-
riphery nodes.

TABLE I. Topological measures performed over large OS weighted nets. The two last columns at left compare the observed � exponent
with the theoretical prediction �= ��−1� / ��−1� �see text�.

Project N L �w 
k� � � � ��−1� / ��−1�

Python 1090 3207 0.98 2.94 1.97 1.57 1.59 1.70

Gaim 1415 2692 0.98 1.9 1.97 1.8 1.24 1.21

Slashcode 643 1093 0.98 1.69 1.88 1.58 1.42 1.51

PCGEN 579 1654 0.98 2.85 2.04 1.67 1.54 1.55

TCL 215 590 0.98 2.74 1.97 1.33 2.34 2.93
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to neighbors with a large degree and knn,i
w �knn otherwise.

This measure captures more precisely the level of affinity
between community members. Here, weighted average
nearest-neighbors degree is almost uncorrelated with node
degree, that is, knn,i�const �see Fig. 3�a��. Low connected
nodes have weak edges because knn,i

w �k� is only slightly larger
than knn�k� for small k. On the other hand, knn,i

w �k��knn�k�
for large degrees, indicating that hubs have the strongest
edges.

The above observations suggest the presence of rich-club
ordering �24�, where an elite group of highly connected and
mutually communicating programmers control the flow of
information generated by the OS community. For instance,
during the development of the web-server software Apache,
a closely-knit and small group of developers contributed
about 90% of key changes, whereas the majority of develop-
ers contributed to marginal software features �25�. As we will
show below, such core set of developers leaves a character-
istic pattern in the social network.

The rich-club coefficient � has been used to assess the
presence of the phenomenon in the Internet �24�. This coef-
ficient measures when the hubs are on average more inter-
connected than the nodes with a smaller degree:

��k� =
2E�k

N�k�N�k − 1�
, �7�

where E�k depicts the number of edges between the N�k
nodes with a degree higher than k �i.e., hubs�. ��k� indicates
the ratio of the observed number of links out of all possible
links between N�k nodes. This coefficient is an alternative
measure of correlations that is non-trivially related to the
average nearest-neighbors degree �see Eq. �5��. In OS net-
works, ��k� increases for k�kc and saturates for k�kc. The
presence of a rich club is often associated to a monotonic
increase in ��k� with k �26�. However, we argue that a better
criteria to detect the rich club is the existence of a crossover
kc in ��k� characterizing the rich nodes. The crossover is
consistent with the small hump in P�k� �see Sec. III�. For
example, in the Python OS community, kc�10 �see Fig.
3�b��. As an illustration, Fig. 3�c� highlights rich members in
theOS Python community or hub nodes having more than
k�10 links.

We observe no rich club from the topological point of
view �not shown�, that is, the observed ��k� coincides with
the expectation value �ran�k� from maximal randomized net-
works having the same degree distribution �26�. However,
the similarity between the rich-club ordering of the maximal
random network and the OS network does not imply that OS
communities lack a rich-club structure �27�. For example, the
Internet contains a well-defined rich-club core despite that
there is no difference between the ��k� measured in the In-
ternet and the maximal randomized network �26�. The above
comparison ignores link weights, perhaps discarding impor-
tant information about the true organization of e-mail ex-
changes. Here we propose a measure that takes into account
both link weights and topological features to assess the ex-
istence of a core subset of agents �i.e., the rich club� in the
social network. We think that our rich-club measure is a ro-
bust method to detect the rich-club core in weighted net-
works.

An important difference between ��k� and our rich-club
coefficient is that we extend the definition of the rich club to
the subset of hubs, or nodes having degree larger than k,
together with their connectors, or nodes with low connectiv-
ity that link two hubs �see Fig. 1 for a nice illustration of the
hub-connector structure in OS networks�. This node subset is
the so-called k-scaffold graph or Sk �28�. The k-scaffold bet-
ter captures the core for disassortative networks �like OS
networks, see Fig. 3�a�� than the raw subset of k hubs used in
��k�.

We define our weighted rich-club coefficient ��Sk ,k� as
follows:

��Sk,k� =
WS�k�

ES�k�
w�
, �8�

where ES�k� depicts the number of edges in the k-scaffold of
the OS network, 
w�=1/E�ijwij is the average edge weight
for the full network, E is the total number of edges, and
WS�k�=�i,j�S�k�wij is the sum of edge weights linking nodes
in the k-scaffold subgraph �29�. The coefficient signals any
deviation from a homogenous distribution of weights in the
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FIG. 3. Correlations and rich-club phenomenon in the Python
OS community. �a� Average degree of nearest neighbors vs degree

knn��k� where ��0.75 �open circles�. Weighted average nearest-
neighbors degree is almost constant �closed circles�. �b� Rich-club
coefficient ��k� scales with degree, ��k��k2, for k�kc�10 while
it is constant, ��k��1, for k�kc. The crossover kc is consistent
with the point of decreasing behavior of 
knn�k��. �c� Visualization
of the rich-club in the Python OS community, where dark nodes
depict hubs with k�kc. Peripherical nodes with k�kc �white balls�
are mainly connected to hubs.
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k-scaffold. When weights are distributed at random then both
the numerator and denominator will be the same and
��S ,k��1. However, it is easy to see that inhomogeneities
in the weight distribution among edges �i.e., when large
weights are clustered in the edges of some connected sub-

graph� yield ��S ,k��1. This seems to be the case for OS
networks �see Fig. 4� where a dramatic growth of ��Sk ,k� is
observed when the core set of programmers is reached. Such
divergence clearly reveals the nonhomogeneous nature of the
OSN, where a large fraction of e-mails flows through a few
OS hubs.

V. NONLOCAL EVOLUTION OF OS NETWORKS

Here, we assess the existence of top-down mechanisms in
the evolution of OS communities. We will argue that OS
networks are not self-organized systems and they require
some level of centralization instead. A bottom-up system re-
lies on local information to achieve a hierarchical organiza-
tion. For instance, brains and social insect colonies are self-
organized systems that operate in the absence of any central
control, like a pacemaker, a leader, or an external template
�30�. On the other hand, agents in a top-down driven system
perform global computations. Here, we use betweenness cen-
trality as a simple model for the computations performed by
agents when selecting the target of communication.

Interestingly, our top-down model predicts the evolution
and dynamics of the OS network, including the �undirected�
degree distribution P�k� and measurements of local correla-
tions �see Figs. 5�c�, 5�d� and 5�e��. This model is motivated
by three empirical observations. �i� There is a nonlinear re-
lationship between node strength and degree �previously re-
ported in Ref.�22��. In a related paper, this relationship has
been explained with a betweenness centrality model �31�. �ii�
Betweenness centrality strongly correlates with node
strength �see Fig. 5�a��. �iii� OS networks have a rich-club
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FIG. 4. Plot of the weighted rich-club coefficient ��S ,k� against
node degree k for the Python OS network. There is a significant
deviation for k�102 that signals the rich-club ordering for this
particular community. The subgraphs show the k-scaffolds or the
predicted rich clubs for different degrees k�100. Line thickness
indicates the weight attached to the link. We can appreciate how
three nodes have a much more stronger internal interaction �i.e.,
exchange a larger number of e-mails� than with the rest of nodes.
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FIG. 5. Social network simulation. �a� Linear correlation between node strength si and betweenness centrality �or node load� bi in the
Python community. The correlation coefficient is 0.99. This trend has been observed in all communities studied here. �b� Estimation of 
 in
the TCL community �see text�. �c� Cumulative degree distribution in the simulated network �open circles� and in the real community �closed
squares�. All parameters estimated from real data: N=215, m0=15, 
m�=3, and 
=0.75. �d� Scaling of average neighbors degree vs degree
in the simulated network �open circles� and in the real social network �closed squares�. There is very good overlap between the model and
data for large k. �e� Rendering of the simulated OS network � to be compared with the OS network GTCL in Fig. 1�b�.
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core �see above�. The rich club indicates a characteristic
scale in the system that emerges from an external reinforce-
ment of core members’ activities.

Core members will be more frequently e-mailed because
of their importance. Key agents keep the community as a
coherent system. In this context, agents exploit social cues to
evaluate one another’s social status �32�. A natural surrogate
of social status is the number of e-mails posted �and re-
ceived� by the member, i.e., node strength si �see Sec. II�.
Members earning high social status are arguably the most
visible and thus they will be accessed much more frequently
�33�. These key members have a global picture of the whole
system, instead of being aware of just some specific parts of
it. Members having a deeper knowledge of the overall sys-
tem’s architecture are likely to process high amounts of in-
formation. If we think in terms of agents in a network, we
should expect them to canalize information flowing from
many different parts of the network �34�.

Taking into account the above, the algorithm for evolving
the �undirected� social network �= �V ,L� consists of the fol-
lowing stages. �i� The system starts �as in real OS systems�
from a small fully connected network of m0 members. �ii� A
new member j joins the social network at each time step. The
new member reports a small number of an average 
m� of
new e-mails �iii� For each new e-mail, we determine the
target node by a nonlocal preferential attachment rule. The
probability that new member j sends an e-mail to an existing
member i is proportional to node betweenness bi, or alterna-
tively, to the node strength si �see below�

��bi�t�� =
�bi�t� + c�


�
j

�bj�t� + c�

, �9�

where c is a constant �in our experiments, c=1� and be-
tweenness bi is recalculated before attaching the new link,
that is, before evaluating the above equation. The exponent 

varies from project to project �see below an empirical
method to estimate this exponent from available data�. Once
the target node i is selected, we place the new edge in �,

i , j��L. Repeat steps �ii�–�iii� until the network reaches the
target size of N�m0 nodes.

The networks generated with the previous model are in
very good agreement to real OS networks. For example, Fig.
5 compares our model with the social network of the TCL
software community. The target social network has N=215
members and m= 
k��3. A simple modification of a known
algorithm for measuring preferential attachment in evolving
networks �35� enables us to estimate the exponent 
 driving
the attachment rate of new links �described in Eq. �9��. Due
to limitations in available network data we have estimated
the attachment kernel depending on node strength si instead
of node betweenness bi. Indeed, we have observed that
strength si and betweenness centrality bi in OS communities
are linearly correlated �see Fig. 5�a��.

In order to measure ��si�t�� we will compute the fraction
of links received by nodes having strength si at time t. This
fraction �see Eq. �10� below� approximates the rate of attach-
ment of new links, which we have hypothesized has the form

described in Eq. �9� for OS networks. From the data, we
compare two consecutive OS network snapshots of the same
software community at times T0 and T1 where T0�T1.
Nodes in the T0 and T1 network are called “T0 nodes” and
“T1 nodes,” respectively. When a new i�T1 node joins the
network we compute the node strength sj of the j�T0 node
to which the new node i links. Then, we can estimate the
attachment kernel as follows:

��s,T0,T1� =

�
i�T1,j�T0

mij��s − sj�

�
j�T0

��s − sj�
, �10�

where ��z�=1 if z=0 and ��z�=0 otherwise, and mij is the
adjacency matrix of the social network. Notice that in order
to estimate the kernel we do not require any assumption
about its functional form. In order to reduce the impact of
noise fluctuations, we have estimated the 
 exponent from
the cumulative function

A�s� = 	
0

s

��s�ds . �11�

Now, under the assumption of Eq. �9� the above function
scales with node strength, A�s��s
+1. Figure 5�b� displays
the cumulative function A�s� as measured in the TCL soft-
ware community with T0=2003 and T1=2004. In this
dataset, the power-law fitting of A�s� predicts an exponent

=0.75. A similar exponent is observed in other systems �not
shown�. In addition, we have estimated the 
BA exponent
with a preferential attachment kernel, ��k��k
BA, as in the
original algorithm by Jeong et al. �35�. The evolution of the
social networks cannot be described by a linear preferential
attachment mechanism because the observed exponent is

BA�1.4 �not shown�.

VI. DISCUSSION

Our analysis shows that open source communities are
closer to the Internet and communication networks than to
other social networks �e.g., the network of scientific collabo-
rations�. The social networks analyzed here are dissasortative
from the topological point of view and assortative when edge
weights are taken into account. This is consistent with the
absence of topological rich club that is nonetheless detected
when link weights are taken into account. The rich-club phe-
nomenon in OS networks seems to be related to a pattern of
nonlocal evolution. Such a nonlocal component appears to be
related with the presence of a core of programmers that make
decisions based on a global view of the system. Core pro-
grammers would both introduce a top-down control and re-
ceive a large amount of e-mail traffic from secondary mem-
bers. Based on these ideas, we have presented a model that
predicts many global and local social network measurements
of the OS network.

We have shown that OS communities are elitarian clubs
where strong hubs control the global flow of information
generated by many peripherical individuals. Our conclusions
are consistent with other qualitative observations of the

SERGI VALVERDE AND RICARD V. SOLÉ PHYSICAL REVIEW E 76, 046118 �2007�

046118-6



open-source phenomenon �36�. Quantitative evidence of elit-
ism in distributed technological communities has been pro-
vided. The observed community organization indicates that
even distributed systems develop internal hierarchies, thus
suggesting that some amount of centralized, global knowl-
edge might be inevitable.

OS communities constitute a previously unexplored ex-
ample of online community. Other internet-based communi-
ties have been studied from a statistical physics perspective,
including blogging �37� and bulletin board systems �BBS�
�38�. Future work should address to what extent the current
findings and modeling apply for other online communities.
For instance, online communities have scale-free architec-
ture, which emerges from heterogeneous members’ behavior.
Hub members in BBS and OS networks connect different
communities in a weak manner but their links are strong
�38�. On the other hand, the comparison of average nearest-
neighbor degree function in the BBS network 
see Fig. 2�D�
in Ref. �38�� and in OS networks �see Fig. 3�a�� indicates
different correlation properties. These differences might stem
from the rich-club ordering of the network �27�. Core mem-
bers of OS networks are externally reinforced by the rest of
the community. Such an external driving of hubs might be
less relevant for other online communities without a shared,
clearly defined goal like in the OS networks �i.e., developing
a technological product�. In this context, the relative weight-
ing of external and internal forces might account for differ-
ences in correlation properties �39� and enable us to assess
the degree of self-organization in online communities �40�.

A similar model to ours was presented in Ref. �31�, where
betweenness is recalculated only after the addition of a new
node and its links. Here, recalculation of node loads repre-
sents a global process of information diffusion. The volume

of e-mail traffic through any node correlates with the past
experience and social context of this node, which we
can compute with the betweenness-based attachment rule
�Eq. �9�� �31�. We can conceive more detailed modeling ap-
proaches. For instance, we can simulate the flow of e-mails
tracing shortest paths in the social network, as in some mod-
els of internet routing �41�. Packet transport-driven simula-
tions can provide better estimations of the number of e-mails
processed by any node. Still, the current model explains re-
markably well many features of OS networks.

Finally, our results might be of interest in future explora-
tions on the dynamics of so-called computational ecologies
�42,43�. Computational ecology was defined as the study of
the interactions that determine the behavior and resource uti-
lization of computational agents in an open system. Early
work by Huberman and Hogg in this area revealed that the
collective behavior of such information-exchanging net-
works of agents can be very complex. The type of organiza-
tion displayed by OSN seems to fit well with the goals of
computational ecology theory. An important advantage is the
explicit consideration of the real network topology reported
here, which could help expand previous work on agent net-
work dynamics.
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